Bachelor of Science (BS)
The joint major programs are designed for students who wish to undertake study in two areas of engineering in order to qualify for employment in either field or for positions in which competence in two fields is required. These curricula include the core courses in each of the major fields. While they require slightly increased course loads, they can be completed in four years. Both majors are shown on the student's transcript of record.
The Bioengineering/Materials Science and Engineering Joint Major is for students who have a keen interest in the field of biomaterials. Students will study the design and synthesis of novel materials that will define new paradigms in biomaterials from the molecular through macroscopic levels, and will also receive a broad-based learning experience that will include exposure to fundamental courses in engineering and life sciences. This joint major aims to allow the student to understand the interface between the two major fields. Students taking this double major will successfully compete for jobs in the field of biomaterials in the academe, industry, and government.
Admission to the Joint Major
Admission directly to a joint major is closed to freshmen and junior transfer applicants. Students interested in a joint program may apply to change majors during specific times in their academic progress. Please see the College of Engineering joint majors website for complete details.
Visit Department Website
Bioengineering
Mission
Since our founding in 1998, the BioE faculty have been working to create an integrated, comprehensive program. Much thought has been put into the question, "What does every bioengineer need to know?" The faculty have been engaged in considerable dialogue over the years about what needs to be included, in what order, and how to do so in a reasonable time frame. Balancing depth with breadth has been the key challenge, and we have reached a point where the pieces have come together to form a coherent bioengineering discipline.
Learning Goals
- Describe the fundamental principles and methods of engineering.
- Understand the physical, chemical, and mathematical basis of biology.
- Appreciate the different scales of biological systems.
- Apply the physical sciences and mathematics in an engineering approach to biological systems.
- Effectively communicate scientific and engineering data and ideas, both orally and in writing.
- Demonstrate the values of cooperation, teamwork, social responsibility, and lifelong learning necessary for success in the field.
- Design a bioengineering solution to a problem of technical, scientific. or societal importance.
- Demonstrate advanced knowledge in a specialized field of bioengineering.
Materials Science
Measured Curricular Outcomes
- Be able to apply general math, science and engineering skills to the solution of engineering problems.
- Be aware of the social, safety and environmental consequences of their work, and be able to engage in public debate regarding these issues.
- Be able to apply core concepts in materials science to solve engineering problems.
- Be knowledgeable of contemporary issues relevant to materials science and engineering.
- Be able to select materials for design and construction.
- Understand the importance of life-long learning.
- Be able to design and conduct experiments, and to analyze data.
- Understand the professional and ethical responsibilities of a materials scientist and engineer.
- Be able to work both independently and as part of a team.
- Be able to communicate effectively while speaking, employing graphics, and writing.
- Possess the skills and techniques necessary for modern materials engineering practice.
Educational Objectives for Graduates
Stated succinctly, graduates from the program will have the following skills:
- Know the fundamental science and engineering principles relevant to materials.
- Understand the relationship between nano/microstructure, characterization, properties and processing, and design of materials.
- Have the experimental and computational skills for a professional career or graduate study in materials.
- Possess a knowledge of the significance of research, the value of continued learning, and environmental/social issues surrounding materials.
- Be able to communicate effectively, to work in teams and to assume positions as leaders.