Course description
This 12-month course is designed to provide you with in-depth training in the core aspects of cognitive neuroscience and human neuroimaging, enabling you to generate and interpret neurobiological data in order to draw conclusions from healthy and unhealthy brains.
We'll also train you in neuroimaging and neurophysiological data collection and analysis techniques, allowing you to investigate and understand the brain-behaviour interrelationship.
Throughout your course, our neuroscientists will introduce you to key investigative techniques which may include functional and structural MRI, EEG, neuropsychology, transcranial magnetic stimulation and transcranial direct current stimulation. Once you have mastered the techniques you need, you will have opportunities to apply these throughout your course to test hypotheses in areas including attention, executive functioning, Alzheimer’s disease, autism and ADHD.
Over six months, you'll work on your research project in cognitive neuroscience with one of our world-leading experts. Your research topic could range from theoretical to basic and to more applied cognitive neuroscience. You may have the opportunity to collect and analyse real-life cognitive brain science data, using state-of-the-art equipment, before presenting your findings at our summer postgraduate students' conference. This project gives you the opportunity to put your new techniques in experimental neuroscience into practice, while exploring ideas at the cutting-edge of cognitive neuroscience. MSc research projects often form the basis of publications in peer-reviewed journals.
- Example research projects
-
- The role of vascular damage in Alzheimer’s disease: Altering brain structure and cognitive function
- Neurovascular coupling in ageing
- Investigating the effects of transcranial direct current stimulation (tDCS) on brain activity, neurovascular coupling and neuroimaging signals in an animal model
- Investigating the neuroanatomical correlates of depression and anxiety in Alzheimer’s disease: a voxel-based morphometry study.
- Neural activity correlates of working memory
- Examining plasticity of the visual cortex using high-frequency visual stimulation and EEG
- Example past papers published, including student authors
-
- Brooke JM, James SS, Jiminez-Rodriguez A, Wilson SP (2022) Biological action at a distance: Correlated pattern formation in adjacent tessellation domains without communication. PLoS Computational Biology. doi:10.1371/journal.pcbi.1009963
- Wilson SP, James SJ, Whiteley DJ, Krubitzer LA (2019) Limit cycle dynamics can guide the evolution of gene regulatory networks towards point attractors. Scientific Reports 9: 16750. doi:10.1038/s41598-019-53251-w
- Cafferata, R. M. T., Hicks, B., & von Bastian, C. C. (2021). Effectiveness of cognitive stimulation for dementia: A systematic review and meta-analysis. Psychological Bulletin, 147(5), 455–476.
If you have a passion for understanding the brain and behaviour, whether your background stems from biology, engineering, physics, mathematics, psychology or medicine, this interdisciplinary course has been designed to ensure that you'll gain in-depth knowledge of the fundamentals of neuroscience and research methods in cognitive neuroscience, ready for an exciting career in research or industry.
The University is home to the Neuroscience Institute which brings together internationally-recognised expertise in medicine, science and engineering to improve the lives of patients and families affected by neurological, sensory and developmental disorders.
Other courses in cognitive neuroscience
We offer MSc courses that cover the full breadth of cognitive neuroscience, from the biological basis to imaging and simulation, allowing you to discover the area that you’re most interested in:
Do you have a question? Talk to us
Book a 15-minute online meeting with our director of postgraduate recruitment to find out more information and ask further questions.
