Bachelor of Science (BS)
The joint major programs are designed for students who wish to undertake study in two areas of engineering in order to qualify for employment in either field or for positions in which competence in two fields is required. These curricula include the core courses in each of the major fields. While they require slightly increased course loads, they can be completed in four years.
The electrical engineering and computer sciences (EECS)/nuclear engineering (NE) joint major combines the traditional electrical engineering (EE) program with one in the nuclear sciences. Nuclear engineering shares with electrical engineering a concern for electrical power generation, automatic control, computer science, and plasmas.
Admission to the Joint Major
Admission directly to a joint major is closed to freshmen and junior transfer applicants. Students interested in a joint program may apply to change majors during specific times during their academic programs. Please see the College of Engineering joint majors website for complete details.
Visit Program Website
Electrical Engineering and Computer Sciences
MISSION
- Preparing graduates to pursue postgraduate education in electrical engineering, computer science, or related fields.
- Preparing graduates for success in technical careers related to electrical and computer engineering, or computer science and engineering.
- Preparing graduates to become leaders in fields related to electrical and computer engineering or computer science and engineering.
LEARNING GOALS
EE
- An ability to apply knowledge of mathematics, science, and engineering.
- An ability to configure, apply test conditions, and evaluate outcomes of experimental systems.
- An ability to design systems, components, or processes that conform to given specifications and cost constraints.
- An ability to work cooperatively, respectfully, creatively, and responsibly as a member of a team.
- An ability to identify, formulate, and solve engineering problems.
- An understanding of the norms of expected behavior in engineering practice and their underlying ethical foundations.
- An ability to communicate effectively by oral, written, and graphical means.
- An awareness of global and societal concerns and their importance in developing engineering solutions.
- An ability to independently acquire and apply required information, and an appreciation of the associated process of life-long learning.
- A knowledge of contemporary issues.
- An in-depth ability to use a combination of software, instrumentation, and experimental techniques practiced in circuits, physical electronics, communication, networks and systems, hardware, programming, and computer science theory.
CS
- An ability to apply knowledge of computing and mathematics appropriate to the program's student outcomes and to the discipline.
- An ability to analyze a problem, and identify and define the computing requirements appropriate to its solution.
- An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.
- An ability to function effectively on teams to accomplish a common goal.
- An understanding of professional, ethical, legal, security and social issues and responsibilities.
- An ability to communicate effectively with a range of audiences.
- An ability to analyze the local and global impact of computing on individuals, organizations, and society.
- Recognition of the need for and an ability to engage in continuing professional development.
- An ability to use current techniques, skills, and tools necessary for computing practice.
Nuclear Engineering
MISSION
The mission of the Department of Nuclear Engineering is to maintain and strengthen the University of California's only center of excellence in nuclear engineering education and research and to serve California and the nation by improving and applying nuclear science and technology. The mission of the undergraduate degree program in Nuclear Engineering is to prepare our students to begin a lifetime of technical achievement and professional leadership in academia, government, the national laboratories, and industry.
LEARNING GOALS
The foundation of the UC Berkeley Nuclear Engineering (NE) program is a set of five key objectives for educating undergraduate students. The NE program continuously reviews these objectives internally to ensure that they meet the current needs of the students, and each spring the Program Advisory Committee meets to review the program and recommend changes to better serve students. The NE Program Advisory Committee was established in 1988 and is composed of senior leaders from industry, the national laboratories, and academia.
Nuclear engineering at UC Berkeley prepares undergraduate students for employment or advanced studies with four primary constituencies: industry, the national laboratories, state and federal agencies, and academia (graduate research programs). Graduate research programs are the dominant constituency. From 2000 to 2005, sixty-eight percent of graduating NE seniors indicated plans to attend graduate school in their senior exit surveys. To meet the needs of these constituencies, the objectives of the NE undergraduate program are to produce graduates who as practicing engineers and researchers do the following:
- Apply solid knowledge of the fundamental mathematics and natural (both physical and biological) sciences that provide the foundation for engineering applications.
- Demonstrate an understanding of nuclear processes, and the application of general natural science and engineering principles to the analysis and design of nuclear and related systems of current and/or future importance to society.
- Exhibit strong, independent learning, analytical and problem-solving skills, with special emphasis on design, communication, and an ability to work in teams.
- Demonstrate an understanding of the broad social, ethical, safety, and environmental context within which nuclear engineering is practiced.
- Value and practice life-long learning.