Search

Chat With Us

    Hydrodynamic and magnetohydrodynamic instabilities in stellar and planetary interiors
    Go to University of Leeds
    University of Leeds

    Hydrodynamic and magnetohydrodynamic instabilities in stellar and planetary interiors

    University of Leeds

    University of Leeds

    flag

    United Kingdom, Leeds

    University RankQS Ranking
    83

    Key Facts

    Program Level

    PhD (Philosophy Doctorate)

    Study Type

    Full Time

    Delivery

    On Campus

    Campuses

    Main Site

    Program Language

    English

    Start & Deadlines

    Next Intake Deadlines
    Apply to this program

    Go to the official application for the university

    Hydrodynamic and magnetohydrodynamic instabilities in stellar and planetary interiors

    About

    Summary

    Observational advances in helio- and astero-seismology have highlighted our poor understanding of the mechanisms of chemical mixing and angular momentum transport in the stably-stratified radiation zones of the Sun and other stars. This project will study various hydrodynamic or magnetohydrodynamic instabilities in stellar and planetary interiors that could contribute to mixing and angular momentum transport. These processes can modify the internal rotations, structures and evolutionary ages of stars, but they are commonly either neglected or modelled in an ad-hoc manner in current stellar models. This project will involve a combination of linear analysis and numerical simulations to understand the properties of one or more of these instabilities, and to determine their nonlinear behaviour. This may involve simulations on high-performance computing facilities, such as the Advanced Research Computing facility at Leeds. The ultimate goal is to understand the nonlinear outcome of these instabilities and to provide simple parameterisations of their mixing and angular momentum transport properties that can be incorporated in stellar models.

    The group in Leeds is one of the leading groups in the field of Astrophysical and Geophysical Fluid Dynamics (https://agfd.leeds.ac.uk), and is actively engaged in research on a wide range of topics including planetary and extrasolar planetary dynamics (the geodynamo, planetary dynamos, tidal interactions between planets and stars, planet formation), solar and stellar dynamics (solar and stellar dynamos, hydrodynamic and magnetohydrodynamic instabilities, turbulence), as well as galactic and extragalactic dynamics on the largest scales. Although this project does not have dedicated funding, all successful applicants without funding will be considered for both STFC funding, and for a fully-funded scholarship in an open competition across the entire School of Mathematics.

    Requirements

    Entry Requirements

    Applicants to research degree programmes should normally have at least a first class or an upper second class British Bachelors Honours degree (or equivalent) in an appropriate discipline. The criteria for entry for some research degrees may be higher, for example, several faculties, also require a Masters degree. Applicants are advised to check with the relevant School prior to making an application. Applicants who are uncertain about the requirements for a particular research degree are advised to contact the School or Graduate School prior to making an application.

    English Program Requirements

    The minimum English language entry requirement for research postgraduate research study is an IELTS of 6.0 overall with at least 5.5 in each component (reading, writing, listening and speaking) or equivalent. The test must be dated within two years of the start date of the course in order to be valid. Some schools and faculties have a higher requirement.

    Fee Information

    Tuition Fee

    GBP 0 

    Application Fee

    GBP  
    University of Leeds

    Hydrodynamic and magnetohydrodynamic instabilities in stellar and planetary interiors

    University of Leeds

    [object Object]

    United Kingdom,

    Leeds

    Similar Programs

    Other interesting programs for you

    Find More Programs
    Wishlist