Summary
All the cells in our bodies are programmed to die. As they get older, our cells accumulate toxic molecules that make them sick. In response, they eventually break down and die, clearing the way for new, healthy cells to grow. This “programmed cell death” is a natural and essential part of our wellbeing. Every day, billions of cells die like this in order for the whole organism to continue functioning as it is supposed to. But as with any programme, errors can occur and injured cells that are supposed to die continue to grow and divide.
Full descriptionThese damaged cells can eventually become malignant and generate tumours. In order to avoid the regular check of programmed cell death, cancer cells reprogram their metabolism so they can cheat death in order to proliferate indefinitely or resist treatment. Cancer researchers have known for decades that tumours use a faster metabolism compared to normal cells in our body. One classic example of this is that cancer cells increase their consumption of glucose to fuel their rapid growth and strike against programmed cell death.
This means that metabolic reprogramming is pivotal to sustain cancer initiation, growth and progression. As such limiting glucose consumption in cancer cells is becoming an attractive tool for cancer treatments. However, not all cancer cell types are sensitive to the removal of glucose, and even for the cancers that are sensitive, limitation of glucose only slows down the rate of cancer progression. Therefore the identification of intracellular pathways that regulate metabolic reprogramming of cancer cells is of great interest for possible therapeutic applications.
Our group, in collaboration with Dr Concetta Bubici at Brunel University London, has conducted a series of interdisciplinary studies (Barbarulo et al., Oncogene 2013; Iansante et al., Nature Commun 2015; Lee et al., Front Cell Dev Biol. 2018) to investigate the intracellular mechanisms regulating cell survival (as opposed to apoptosis, a type of programmed cell death). In this project, we will investigate the intracellular pathways regulating the metabolic reprogramming in normal and disease conditions using cell-based techniques and mouse genetics.
We will use in-vivo and ex-vivo experimental techniques to study cellular metabolism to understand the functional role of specific genes involved in the regulation of apoptosis in cancer chemoresistance in solid (liver and breast) and haematological (lymphoma and myeloma) cancers, as well as during tissue regeneration and tumour development.
You will gain experience in a broad range of molecular and cell biology techniques including the powerful ‘gene silencing’ protocols using short-hairpin RNA approaches, lentivirus-mediated shRNA; immunoblotting, immunoprecipitation-complex-based kinase assay, co-immunoprecipitation and pulldown analyses, PCR, gel electrophoresis, ELISA, flow cytometry, drug-testing toxicity, immunohistochemistry, genotyping and in-vivo drug delivery and analyses. All techniques are well established within the laboratory.
Key benefits
The Leeds Institute of Medical Research (LIMR) at St. James’s is a vigorous and highly interactive research institute that investigate the causes and treatment of disease at the level of molecules, cells, patients and populations. The Institute research interests include the genetics, genomics and cell biology of disease, haematology and immunology, cancer research (from basic biology through to clinical trials and outcomes research), gastroenterology, surgery and pathology and the use and integration of big data sets into these problems.
