The MS in manufacturing and mechanical systems integration is a manufacturing engineering degree designed for individuals who wish to achieve a high level of aptitude, competence, and skill in mechanical or manufacturing engineering, or advanced mechanical systems. The program combines engineering, business, and management to effectively guide and lead in a range of manufacturing enterprises.
The program is offered by the department of manufacturing and mechanical engineering technology in collaboration with Saunders College of Business and the Kate Gleason College of Engineering.
Manufacturing Engineering Courses
The manufacturing engineering degree includes core courses that cover manufacturing and mechanical systems fundamentals, project management, advanced mechanical systems, integrated mechanical systems, manufacturing process improvements and efficiencies, and the business and financial aspects of manufacturing. You'll also complete a three-course option, elective courses, and a capstone project, thesis, or comprehensive exam.
Options are available in advanced mechanics, electronics packaging, polymer engineering and technology, product design, quality, and robotics and advanced manufacturing systems. Students may be required to take additional prerequisite courses depending on their background and the option selected. The graduate director may approve the waiver of courses in the prerequisite group from graduation requirements, depending on a student's academic and employment background.
- Advanced Mechanics: The advanced mechanics option analyzes classical and contemporary theoretical models of material structures. Practical methods and approaches, experimental results, and optimization of material properties and structure performance are put to use for capstones and thesis projects. Students who plan on careers in advanced mechanical modeling and design should consider this option.
- Electronics Packaging: Students in this option receive a detailed education in printed circuit board assembly design, manufacturing, materials, failure modes, and root causes. They'll also gain a broad understanding of best practices and learn the scope of the industry. Anyone who plans on designing or manufacturing products that contain circuit board assemblies, in either rigid or flexible formats, would benefit from this option. Topics of study include electronics miniaturization, defect analysis, solder reliability, and process optimization.
- Polymer Engineering and Technology: The purpose of this option is to equip future engineers with the unique skills necessary to enter the plastics industry, one of the largest manufacturing related industries in the United States. Successfully developing new plastics materials and products requires specialized knowledge of these complex manufacturing systems. A critical component of this option is the completion of a research project in the area of plastics and polymer technology. Some projects have focused on polymer composites, shape memory/self-healing materials, 3D printing, and biodegradable polymers.
- Product Design: Product design in the 21st century requires a skill set that has grown to be much more than just designing parts that fit together in a product. Parts and products must now be designed with consideration for the best choices of features, the ability to function ideally under varying conditions and environments, and ease in manufacturing and assembly. These skills are all required by today's engineers and product designers and are equally important for engineering managers to understand.
- Quality: The quality option enables students to lead a problem-solving project within a quality management team. Students will learn to reduce unacceptable variability in materials, production, and manufacturing systems resulting in high quality finished products. Students will use skills in robust design, linear regression, and modeling to show that variability can be reduced and that a solution is sustainable. Students who select this option may be interested in pursuing a leadership role as a manufacturing engineer, senior quality engineer, continuous process improvement engineer, or process engineer.
- Robotics and Advanced Manufacturing Systems: Robotics is more than software. In addition to programming, students who choose this option will study how robotic systems are designed to complement a manufacturing system or aid in human assistance products with a focus on limitations and design improvements. Capstone and thesis projects involve optimization and improvement of designs to achieve a specific robotic behavior or task. Robotic integrators as well as robotic designers will benefit by learning robotic mechanical and electrical limitations and development.
Electives
The number of electives needed to complete the program is based on whether the student chooses to complete a thesis, capstone project, or comprehensive exam. The thesis option requires one elective, the capstone project requires two electives, and the comprehensive exam option requires three electives. Elective courses can be any course from a different concentration from the one chosen, a graduate-level course from another program (if approved by the graduate director and faculty member teaching the course), or an independent study course (if approved by the student's graduate program director).
Students are also interested in: Mechanical Engineering MS, Mechanical Engineering ME, Engineering Management ME, Industrial and Systems Engineering MS
