Search

Chat With Us

    Solving differential equations with Fourier extension
    Go to University of Leeds
    University of Leeds

    Solving differential equations with Fourier extension

    University of Leeds

    University of Leeds

    flag

    United Kingdom, Leeds

    University RankQS Ranking
    83

    Key Facts

    Program Level

    PhD (Philosophy Doctorate)

    Study Type

    Full Time

    Delivery

    On Campus

    Campuses

    Main Site

    Program Language

    English

    Start & Deadlines

    Next Intake DeadlinesOctober-2026
    Apply to this program

    Go to the official application for the university

    Next Intake October-2026

    Solving differential equations with Fourier extension

    About

    Summary

    Fourier series are a classical method for approximating functions which can be used in spectral methods to solve differential equations. However, Fourier series do not work well for non-periodic functions and they do not work at all on irregular domains in two or more dimensions.

    Fourier extension provide a way around this problem. The idea is to extend the irregular domain to a rectangle and approximate the unknown function by a Fourier series defined on the rectangle. Earlier research shows that this method can in principle be used to solve differential equations but there are some practical issues. Firstly, Fourier series form an orthogonal basis leading to very nice properties, but Fourier extension does not form a basis which means that the approximation problem is ill conditioned. Secondly, the method needs to be sped up if we want to compete with existing methods; the basic idea here is to use the Fast Fourier Transform but the details are not clear.

    The aim of this project is to design, analyze and implement a method based on Fourier extension for solving differential equations on irregular domains. We want a method with good performance for which we can prove spectral convergence. This project requires prior knowledge of numerical analysis (approximation theory, linear algebra, spectral methods) and the mathematical analysis that underpins this.

    Requirements

    Entry Requirements

    Applicants to research degree programmes should normally have at least a first class or an upper second class British Bachelors Honours degree (or equivalent) in an appropriate discipline. The criteria for entry for some research degrees may be higher, for example, several faculties, also require a Masters degree. Applicants are advised to check with the relevant School prior to making an application. Applicants who are uncertain about the requirements for a particular research degree are advised to contact the School or Graduate School prior to making an application.

    English Program Requirements

    The minimum English language entry requirement for research postgraduate research study is an IELTS of 6.0 overall with at least 5.5 in each component (reading, writing, listening and speaking) or equivalent. The test must be dated within two years of the start date of the course in order to be valid. Some schools and faculties have a higher requirement.

    Fee Information

    Tuition Fee

    GBP 0 

    Application Fee

    GBP  
    University of Leeds

    Solving differential equations with Fourier extension

    University of Leeds

    [object Object]

    United Kingdom,

    Leeds

    Similar Programs

    Other interesting programs for you

    Find More Programs
    Wishlist