Search

Chat With Us

    Towards new antibacterial drugs to treat infections caused by multidrug-resistant bacteria: identification and characterization of novel natural produ
    Go to University of Leeds
    University of Leeds

    Towards new antibacterial drugs to treat infections caused by multidrug-resistant bacteria: identification and characterization of novel natural produ

    University of Leeds

    University of Leeds

    flag

    United Kingdom, Leeds

    University RankQS Ranking
    83

    Key Facts

    Program Level

    PhD (Philosophy Doctorate)

    Study Type

    Full Time

    Delivery

    On Campus

    Campuses

    Main Site

    Program Language

    English

    Start & Deadlines

    Next Intake Deadlines
    Apply to this program

    Go to the official application for the university

    Towards new antibacterial drugs to treat infections caused by multidrug-resistant bacteria: identification and characterization of novel natural produ

    About

    Summary

    Antibiotics make possible the treatment and cure of life-threatening bacterial infections and have added over a decade to the average human lifespan. Unfortunately, the utility of these drugs is being rapidly eroded as pathogenic bacteria evolve to resist their effects; in 2019, antimicrobial resistance (AMR) killed ~1.3 million people worldwide, and this figure is set to rise to 10 million by 2050. To address this problem, it is imperative that new antibiotics are discovered as matter of urgency.

    The best-validated source of antibiotics is nature, with most of our existing antibiotic armamentarium deriving from soil microorganisms. However, this source stopped routinely yielding novel compounds decades ago and was largely abandoned in the search for new antibiotics. Viewed through the lens of our current knowledge, this was not because this source had been comprehensively mined – far from it, in fact– but simply that continuing to screen the same types of microorganisms in the same way will not deliver new antibiotics (“if you do what you have always done, you get what you always got”).

    Full description

    Our view is that nature remains far and away the best place to look for new antibiotics, though strategic innovation will be essential to do so effectively. The O’Neill lab is working to systematically address the pit-falls and bottle-necks in natural product antibiotic discovery, identifying new sources/ types of microorganism for testing, creating novel screening tools for improved detection of antibiotics, and evolving approaches that allow rapid assessment of the chemical/ functional novelty and therapeutic potential of these compounds .

    The proposed studentship will not only work to establish innovative approaches to antibiotic discovery, but will also deploy these to identify new drug candidates effective against the most problematic types of multi-drug resistant bacteria. Building on exciting recent findings in our lab, this project will utilise ichip technology to recover microorganisms new to science from a variety of sources, and will screen these for antibiotic production using novel tools/ approaches that will be created or evolved over the course of the study. Collectively, this project will rejuvenate and accelerate the discovery of new antibiotics from nature, thereby helping to address the global challenge of AMR and providing the appointed student with cutting-edge, multidisciplinary training in bacteriology, molecular biology and antibiotic discovery.

    Please see the O’Neill lab website for more information about what we do, and links to our published work:

    https://biologicalsciences.leeds.ac.uk/molecular-and-cellular-biology/staff/119/professor-alex-o-neill

    References

    • Galarion LH, Mitchell JK, Randall CP, O'Neill AJ (2023) An extensively validated whole-cell biosensor for specific, sensitive and high-throughput detection of antibacterial inhibitors targeting cell-wall biosynthesis. Journal of Antimicrobial Chemotherapy, 78: 646-655
    • Mohamad M, Nicholson D, Saha CK, Hauryliuk V, Edwards TA, Atkinson GC, Ranson NA, O'Neill AJ (2022) Sal-type ABC-F proteins: intrinsic and common mediators of pleuromutilin resistance by target protection in staphylococci. Nucleic Acids Research, 50: 2128-2142.
    • Galarion LH, Mohamad M, Alzeyadi Z, Randall CP, O'Neill AJ (2021). A platform for detecting cross-resistance in antibacterial drug discovery. Journal of Antimicrobial Chemotherapy, 76: 1467-1471
    • Nass NM, Farooque S, Hind C, Wand ME, Randall CP, Sutton JM, Seipke RF, Rayner C, O'Neill AJ (2017). Revisiting unexploited antibiotics in search of new antibacterial drug candidates: the case of gamma-actinorhodin. Scientific Reports, 7: 17419

    Requirements

    Entry Requirements

    Applicants to research degree programmes should normally have at least a first class or an upper second class British Bachelors Honours degree (or equivalent) in an appropriate discipline. The criteria for entry for some research degrees may be higher, for example, several faculties, also require a Masters degree. Applicants are advised to check with the relevant School prior to making an application. Applicants who are uncertain about the requirements for a particular research degree are advised to contact the School or Graduate School prior to making an application.

    English Program Requirements

    The minimum English language entry requirement for research postgraduate research study is an IELTS of 6.0 overall with at least 5.5 in each component (reading, writing, listening and speaking) or equivalent. The test must be dated within two years of the start date of the course in order to be valid. Some schools and faculties have a higher requirement.

    Fee Information

    Tuition Fee

    GBP 0 

    Application Fee

    GBP  
    University of Leeds

    Towards new antibacterial drugs to treat infections caused by multidrug-resistant bacteria: identification and characterization of novel natural produ

    University of Leeds

    [object Object]

    United Kingdom,

    Leeds

    Similar Programs

    Other interesting programs for you

    Find More Programs
    Wishlist