Bachelor of Science (BS)
The joint major programs are designed for students who wish to undertake study in two areas of engineering in order to qualify for employment in either field or for positions in which competence in two fields is required. The joint majors contain comparable proportions of coursework in both major fields. While they require slightly increased course loads, they can be completed in four years. Both majors are shown on the student's transcript of record. Students in this joint major program are concurrently enrolled in both the College of Engineering and the College of Chemistry, but their college of residence will be the College of Chemistry.
The areas of nuclear technology that depend heavily upon chemical engineering training include isotope separation, fuel reprocessing, waste management, feed material preparation, fuel chemistry, effluent control, fusion reactor fuel processing, and new reactor types.
Admission to the Joint Major
Students may petition for a change to a joint major program after their first year. For further details regarding how to declare the joint major, please contact the College of Chemistry.
Other Joint Major Offered with the College of Engineering
Chemical Engineering/Materials Science Engineering
Chemical Engineering
MISSION
The goals of chemical engineering breadth requirements are to teach the arts of writing clearly and persuasively, to develop the skills to read carefully and evaluate evidence effectively, and to instill an awareness of humanity in historical and social contexts. The Berkeley American Cultures requirement affirms the value of diversity in acquiring knowledge.
The technical curriculum in chemical engineering seeks to provide students with a broad education emphasizing an excellent foundation in scientific and engineering fundamentals.
LEARNING GOALS
1-An ability to identify, formulate, and solve complx engineering problems by applying the principles of engineering, science, and mathematics
2-An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3-An ability to communicate effectively with a range of audiences
4-An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in a global, economic, environmental, and societal context
5-An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6-An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7-An ability to acquire and apply new knowledge as needed, using appropriate learning strategies
Nuclear Engineering
Mission
The mission of the Department of Nuclear Engineering is to maintain and strengthen the University of California's only center of excellence in nuclear engineering education and research and to serve California and the nation by improving and applying nuclear science and technology. The mission of the undergraduate degree program in Nuclear Engineering is to prepare our students to begin a lifetime of technical achievement and professional leadership in academia, government, the national laboratories, and industry.
Learning Goals
The foundation of the UC Berkeley Nuclear Engineering (NE) program is a set of five key objectives for educating undergraduate students. The NE program continuously reviews these objectives internally to ensure that they meet the current needs of the students, and each spring the Program Advisory Committee meets to review the program and recommend changes to better serve students. The NE Program Advisory Committee was established in 1988 and is composed of senior leaders from industry, the national laboratories, and academia.
Nuclear engineering at UC Berkeley prepares undergraduate students for employment or advanced studies with four primary constituencies: industry, the national laboratories, state and federal agencies, and academia (graduate research programs). Graduate research programs are the dominant constituency. From 2000 to 2005, sixty-eight percent of graduating NE seniors indicated plans to attend graduate school in their senior exit surveys. To meet the needs of these constituencies, the objectives of the NE undergraduate program are to produce graduates who as practicing engineers and researchers do the following:
- Apply solid knowledge of the fundamental mathematics and natural (both physical and biological) sciences that provide the foundation for engineering applications.
- Demonstrate an understanding of nuclear processes, and the application of general natural science and engineering principles to the analysis and design of nuclear and related systems of current and/or future importance to society.
- Exhibit strong, independent learning, analytical and problem-solving skills, with special emphasis on design, communication, and an ability to work in teams.
- Demonstrate an understanding of the broad social, ethical, safety, and environmental context within which nuclear engineering is practiced.
- Value and practice life-long learning.