Search

Chat With Us

    Groups definable in tame expansions of o-minimal structures
    Go to University of Leeds
    University of Leeds

    Groups definable in tame expansions of o-minimal structures

    University of Leeds

    University of Leeds

    flag

    United Kingdom, Leeds

    University RankQS Ranking
    83

    Key Facts

    Program Level

    PhD (Philosophy Doctorate)

    Study Type

    Full Time

    Delivery

    On Campus

    Campuses

    Main Site

    Program Language

    English

    Start & Deadlines

    Next Intake DeadlinesOctober-2026
    Apply to this program

    Go to the official application for the university

    Next Intake October-2026

    Groups definable in tame expansions of o-minimal structures

    About

    Summary

    This project lies at the nexus of model theory (mathematical logic), group theory and combinatorics. The main objects of study are groups definable in various structures, which can be of topological/geometric nature, such as o-minimal structures and tame expansions of them, or more generally of combinatorial nature, such as structures with NIP (not the independence property). The NIP property is also of interest to statistics and machine learning.

    In the o-minimal setting, definable groups have been fairly understood with perhaps the most notable result being the solution of Pillay’s conjecture, which draws an explicit connection between those groups and real Lie groups. Extensions of Pillay’s conjecture in one of many possible expansions of o-minimal structures will be investigated in this project. Concrete examples include the expansion of the real field by a predicate for (a) the set of real algebraic numbers, (b) a dense independent set, (c) the set of all rational powers of 2, (d) the set of all integer powers of 2, or (e) any subgroup of the real multiplicative group with the Mann property. Those settings have recently seen the development of model-theoretic tools, which will be used in this project.

    In the more general, NIP setting, fewer tools are available, and concrete questions will involve first the development of an understanding of definable sets in NIP expansions of o-minimal structures, and then its application to the study of definable groups.

    The successful applicant will benefit from a large and exceptionally vibrant research group in mathematical logic, including 7 permanent academic staff with expertise in model theory, set theory, recursion theory, proof theory, categorical logic, and logic in computer science. The logic group consistently also includes several postdocs and PhD students, runs 4 regular seminar series and is a node of several regional and international research networks. The group is an active participant in the MAGIC consortium, which provides specialist lecture courses for mathematics postgraduates at a network of 20 UK Universities.

    Requirements

    Entry Requirements

    Applicants to research degree programmes should normally have at least a first class or an upper second class British Bachelors Honours degree (or equivalent) in an appropriate discipline. The criteria for entry for some research degrees may be higher, for example, several faculties, also require a Masters degree. Applicants are advised to check with the relevant School prior to making an application. Applicants who are uncertain about the requirements for a particular research degree are advised to contact the School or Graduate School prior to making an application.

    English Program Requirements

    The minimum English language entry requirement for research postgraduate research study is an IELTS of 6.0 overall with at least 5.5 in each component (reading, writing, listening and speaking) or equivalent. The test must be dated within two years of the start date of the course in order to be valid. Some schools and faculties have a higher requirement.

    Fee Information

    Tuition Fee

    GBP 0 

    Application Fee

    GBP  
    University of Leeds

    Groups definable in tame expansions of o-minimal structures

    University of Leeds

    [object Object]

    United Kingdom,

    Leeds

    Similar Programs

    Other interesting programs for you

    Find More Programs
    Wishlist