Project details
In metal fatigue, microplastic strain localisation leads to the formation of discrete slip bands, which contribute to the initiation and propagation of short cracks. While these phenomena are well-documented experimentally, their modelling remains time-consuming and limited to small volumes, not practical for engineering applications. Hence, there is an imminent need for methods that predict the development of such deformation states and provide early signs of damage in structural components.
This project aims to investigate the initiation and evolution of slip bands and their role in the formation of short fatigue cracks in Ni-based superalloys. The project work plan offers a unique opportunity for skills acquisition as it combines experimentation and advanced numerical simulations. Novel numerical tools (peridynamics, phase-field method) will be used with established crystal plasticity theories to describe the deformation at the microscale. In parallel, state-of-the-art experimentation (SEM/TEM) will be employed to study the low-cycle fatigue behaviour of these alloys under room and high temperatures. These datasets will be further used to calibrate and validate the numerical models developed in this project.
The produced results are expected to directly impact the design of safety-critical components, such as gas turbine blades.
